
www.manaraa.com

Probabilistic Computation for Information Security

Piotr Mardziel
Department of Computer Science

University of Maryland, College Park
College Park, MD 20740
piotrm@cs.umd.edu

Kasturi Rangan Raghavan
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90024
kr@cs.ucla.edu

Probabilistic computation is a convenient means of mechanically reasoning about a variety of infor-
mation security problems. At its core, information security concerns itself with measuring or limit-
ing the knowledge an adversary might attain from interacting with a protected system. Probabilistic
inference lets one compute this knowledge explicitly as long as the interaction can be described as a
program in a suitable probabilistic language that supports conditioning. Security concerns, however,
require soundness guarantees on probabilistic inference which are generally not present in machine
learning applications. We summarize some recent work on probabilistic computing for information
security and highlight challenging aspects that still need to be addressed.

Tracking knowledge Tracking adversary knowledge is a central tool for the applications to follow.
We describe this core concept adopting the notation and conventions of Clarkson’s experimental
protocol [2].

Bob seeks the answer of a query, the output of a function evaluated on Alice’s data. The data here
is secret in that Bob does not already know it. Alice wants to protect her secret, making sure that
answering Bob’s query is safe. To do this, Alice will explicitly track what Bob learns about her
secret, treating Bob as a rational adversary who will use any information provided to him in order to
learn Alice’s secret. Specifying the protection of the secret will be addressed shortly.

Alice’s secret data is a value s∗ which Bob knows is in some set of possibilities, Secrets. Further-
more, Bob considers some values more likely than others, a probability distribution δ1 : Secrets→
R. We will refer to this distribution as Bob’s belief. Alice then considers the effect of letting Bob
learn the output of a potentially non-deterministic query function Q, written in a probabilistic lan-
guage. She can do this by computing the conditional distribution δ2

def
= δ1|(Q(s∗) = o) for some

potential output value o. Assuming δ|C indeed implements exact probabilistic conditioning, this
distribution δ2 will be the belief Bob would attain, were he to see that the functionQ outputs o given
input s∗.

If Bob indeed does learn this output, Alice can revise her representation of Bob’s belief to δ2 which
she can then revise further if Bob learns additional functions over her data. In this manner Alice
explicitly tracks what Bob knows about her secret as a probability distribution. The problems of
how Alice knew δ1, Bob’s initial belief, in the first place and whether she can actually perform exact
inference will need to be addressed.

Knowledge-based policy enforcement Alice can use the tracked belief in a variety of ways, the
most direct of which is to judge the information security or safety ofQ in order to determine whether
she should let Bob get access to the output of the function. To do this, Alice starts by defining a
knowledge-based policy P : Dist → {True,False}, where Dist is a set of all distributions over
Secrets. For example, Alice might require that Bob never becomes too certain of her value, so she
defines P (δ) def

= ∀s ∈ Secrets . δ(s) ≤ t for some threshold t. She will then deem the query Q safe
whenever P (δ2) holds. This particular policy is an application of Smith’s vulnerability metric [6],
which measures the expected likelihood of Bob guessing a secret value correctly in one try.

Unfortunately for Alice, exact probabilistic conditioning is expensive so she decides has to use an
approximation. Instead of computing δ2, she gets δ∼2

def
= δ1|∼ (Q(s∗) = o) ≈ δ1| (Q(s∗) = o). The

1

www.manaraa.com

approximation δ∼2 here need not be a proper probability distribution. She does not want the approx-
imate inference to conclude a query is safe when it really is not so she requires the approximation to
be sound relative to her policy:
Definition. A probabilistic inference method |∼ is sound relative to a policy P iff for every belief
δ, if P (δ|C) fails then P (δ|∼C) fails.

For Alice’s example policy, a sound inference method would have to never underestimate the prob-
ability of any secret, though it could over-approximate it. In recent work [5], we demonstrate a
probabilistic language capable of this approximate, but sound inference. Given the definition of
conditional probability, Pr(A|B) = Pr(A ∧ B)/Pr(B), the probabilistic interpreter maintains an
over-approximation of Pr(A ∧ B) and an under-approximation of Pr(B), leading to a sound upper
bound for Pr(A|B). The work shows how Alice can enforce her policy without revealing anything
about her secret to Bob. Further application of these ideas were proposed to protect information of
multiple mutually distrusting parties participating in secure multi-party computation [4].

If Alice deems Q safe, she can allow Bob access to Q(s∗) and update her representation of Bob’s
belief to δ∼2 . If she rejects Q, she will not allow access to Q(s∗) and keep δ1 as the representation
of Bob’s unchanged belief. Whether Alice deems Q safe or not, she can repeat the same process
for another program that might come around, starting from either δ1 or δ∼2 , thereby maintaining an
explicit representation of Bob’s knowledge while enforcing her knowledge-based policy.

Obfuscation/Noising Probabilistic computation is also very convenient for discerning the effects
of obfuscation or noising mechanisms, via simple composition with the query function Q.

If Alice does not want Bob to learn the output of Q directly, she can add obfuscation to its input,
or noising to its output. Let O be a potentially non-deterministic obfuscation function, written in a
probabilistic language, that takes in a value s ∈ Secrets and produces another s′ ∈ Secrets. De-
pending on the structure of Secrets, this obfuscation might be in the form of resolution reduction,
permutation of locations, or a variety of other mechanisms. Alice can then consider Bob’s knowl-
edge were he to learn the output of an obfuscated functionQ(O(s∗)) instead ofQ(s∗) directly, using
conditioning, δ2 = δ1| (Q(O(s∗)) = o).

Alice can also consider adding noise to the output of Q, using a noising function N , again written in
a probabilistic language. She can then consider Bob’s revised belief δ2 = δ1| (N(Q(s∗)) = o).
She might consider obfuscation and noise at the same time, revising Bob’s belief to δ2 =
δ1| (N(Q(O(s∗))) = o). Bob’s presumed revised belief assumes that he knows O and N .

If security is the only issue then a trivial noising function, N(s∗)
def
= 42, ensures that Bob learns

absolutely nothing about s∗. This ignores utility concerns that Bob (and Alice) might be interested
in. One approach is to specify Bob’s utility in terms of the accuracy or precision of shared query
answer o′ compared to the actual query answer o. Depending on the structure of Q, it is certainly
possible to reveal some obfuscated or noised version Q′ that simultaneously satisfy both security
and utility objectives.

Secrets as Probabilistic Programs It might appropriate for Alice to express her security concerns
in terms of a function of her secret data, instead of the secret data itself. Her data might itself not
be all that damaging, and in that setting it does not make sense for Alice to protect against its
reconstruction by Bob. Instead Alice can define a “blacklist” function B, specified as a probabilistic
program that operates on her data, whose output she would like to protect from inference by Bob.

In order to check security of B, and utility of Q, relative to Bob’s knowledge of her secret, she
can evaluate these functions on the probabilistic value representing Bob’s knowledge, written B(δ)
and Q(δ), respectively. Alice can then attempt to add obfuscation/noise while making sure some
agreed-upon utility policy U will be satisfied on Bob’s view on the output of Q.
Definition. Given belief δ, security policy P and utility policy U , are satisfied for blacklist function
B and utility function Q whenever P (B(δ)) and U(Q(δ)) hold.

Alice can determine the safety of B(δ) and utility of Q(δ) in a variety of ways. She could use the
policy P from earlier on δB , bounding Bob’s chances of guessing the output of B. She can also use
the negation of P , specifically U(δ)

def
= ¬P (δ) = ∃o . δ(o) > t, to measure some minimum level

of utility from Q, by checking that U(Q(δ)) holds. Alternate means could involve the ubiquitous

2

www.manaraa.com

entropy quantity to measure a lower bound on the entropy ofB(δ) and an upper bound on the entropy
of Q(δ).

Having the ability to measure the secrecy and utility of Bob’s belief, Alice can then determine how
to construct a function Q′(s) = N(Q(O(s))) to ensure δ| (Q′(s∗) = o) satisfies the security and
utility policies (when possible). In recent work [1] we demonstrate how certain sets of features of
s can be safely shared, while preventing Bob from guessing the output of a blacklist function B
defined on same set of features.

We have not considered yet the design of obfuscation and noising functions. One approach is to
assume that obfuscation and noising functions are specified as probabilistic programs with some
free parameters. For example, we might consider noising a Boolean query function so that with
probability ρ the output is forced to True. By sweeping over choices for ρ, we can check whether
there is a ρ that satisfies both security and utility objectives.

Predictive models for blacklist functions The blacklist (and utility) functions are useful to pro-
tect information which is not part of the secret value s∗, but is somehow correlated with the secret
value. For example, Alice’s simple demographical information like age, postal code, and gender
might compose the structure of s∗ but Alice might be more interested in protecting her religions
preference, even though this is not a field in the system she is securing.

Predictive models or classifiers, however, might exist that do a reasonable job of predicting religion
given demographical information. Naturally, Alice could specify one such model as her blacklist
function B. Unfortunately this does not stop Bob from using a different model B which is as good
or better at predicting Alice’s religion. This is especially problematic when there are two disjoint
sets of fields in Alice’s secret s∗ that are both good for predicting religion. Alice might obfuscate
one, but leave the second set completely untouched.

In general it is impossible for Alice to ensure all possible models for religion are defeated by her
noising/obfuscation functions. This is simply due to Bob’s potential model B(s) = r where r is
a constant that just happens to be Alice’s religion. To make this problem reasonable, we restrict
ourselves to models that Bob, assumed rational, could produce, given some public body of data
available to both Alice and Bob.

Background knowledge and future work An assumption on the common background data is
useful for both limiting the sorts of blacklist functions B Alice should be concerned about and for
determining what Bob’s initial belief δ about Alice’s secret fields can be.

If we assume Bob takes advantage of a common labeled dataset Dr of tuples (si, ri) tying de-
mographical information to religion, Bob can learn a variety of predictive models for religion via
supervised machine learning techniques. Alice would like to therefore protect herself (by specifying
blacklists) against any model that from Bob’s point of view is accurate–i.e. it does well on predicting
religion in Dr. How to do this effectively is a challenging aspect we would like to address in the
future.

A related problem is how Alice can construct δ, the initial belief Bob has about her secret value.
The use of probability distributions to model Bob’s knowledge already presumes that Alice’s secret
value s∗ is a sample from δ. It is natural, then, to presume a shared data set D instances si among
the population Alice belongs to, is also composed of samples from that distribution.

Alice could thus assume Bob would form an initial belief about her via a statistical model with
some unknown parameters p with an initial distribution on p, labeled δp and sampling function S,
written in a probabilistic language, that produces samples s ∈ Secrets given parameters p. Alice
could then infer these parameters by conditioning on the samples from this distribution, specifically
δp|(S(p) = s1)|(S(p) = s2)| · · · as is demonstrated in recent work of Gordon et al.[3]. Bob’s initial
belief about s∗ would then be the distribution S(δp).

The problem here is the same as in the problem of specifying blacklist functions; Alice does not
know what model Bob could use either to infer the blacklist (e.g. religion) or to form an initial
belief. Alice could take into account multiple models, thereby having to track several options for
Bob’s belief, but how to construct a sufficient set of models is another challenging element of our
future work.

3

www.manaraa.com

References

[1] Supriyo Chakraborty, Kasturi R. Raghavan, Mani B. Srivastava, Chatschik Bisdikian, and
Lance M. Kaplan. Balancing value and risk in information sharing through obfuscation. In
Proceedings of the International Conerence on Information Fusion (FUSION), 2012.

[2] Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Quantifying information flow
with beliefs. Journal of Computer Security, 17(5):655–701, 2009.

[3] Andrew D. Gordon, Mihhail Aizatulin, Johannes Borgstroem, Guillaume Claret, Thore Grae-
pel, Aditya Nori, Sriram Rajamani, and Claudio Russo. A model-learner pattern for bayesian
reasoning. In Proceedings of the ACM SIGPLAN Conference on Principles of Programming
Languages (POPL), 2013.

[4] Piotr Mardziel, Michael Hicks, Jonathan Katz, and Mudhakar Srivatsa. Knowledge-oriented se-
cure multiparty computation. In Proceedings of the ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (PLAS), 2012.

[5] Piotr Mardziel, Stephen Magill, Michael Hicks, and Mudhakar Srivatsa. Dynamic enforcement
of knowledge-based security policies. In Proceedings of the IEEE Computer Security Founda-
tions Symposium (CSF), 2011.

[6] Geoffrey Smith. On the foundations of quantitative information flow. In Proceedings of the
Conference on Foundations of Software Science and Computation Structures (FoSSaCS), 2009.

4

